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I~EASURE2~ENT OF RANDOM TL.’-i’ VARIANT LINEAR CI~ANNELS

A~ S TRACT

This paper concerns the problems of the rneasureability
and mea surement of random t ime—var i an t  l inear channels .
With regard to measureabil~.ty, a new , less s tr ingent  channel
measureabili ty  criter ion is proposed to supercede the BL
product introduced by Kai1~~th . This cri ter ion involves the
area of occupancy of the D~ po1:~r—de1~~~~spread func tion  (or
its d u a l ).  By using tim e arj d b~ nc~width constraints on the
input and output of a char~m~el , the channe l measurement
problem is reduced to the r~c~ surernent of a discrete set
of f i ni t e  parameters . Optima l measurement techniques are
described and their p~ r fc ’r~~ances determined for  the two
cases wherein the cha nne l correlat ion function is known
an d unknown s
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MEASU REMENT OF RA1’D~ M T IME-VARYING LINEAR CHANNELS

I. I~~~RODU~ TION

• The measurement and characterization of communication
channels has received increasing attention in recent years due to
the projected widespread use of digital communications. Reliable

• high speed digital data transmission requires considerably more
knowledge and equalization of channel characteristics than does
conventional highly redundant analog transmissions. This
paper is concerned both with the measureability and with the
measurement of random time-varying linear channels.

The problem of the measurement of system functions (input—
output relations) of random tims variant channels differs from
the classic problem of filtering a random signal in that even in
the absence of noise the random system function may be non—mea—
sureable. It appears that this fact was first pointed out by
Kailath [1] who developed some measureability criteria and in-
troduced a channel parameter called the “spread factor”. This
parameter is the product of Bmaxi the maximum rate of variation
of the system in Hz, by L ax~ 

the maximum multipath spread of
the channel. For reasons which will become clear subsequently,
we call the product B ax L ax the “rectangular” spread factor of the
channel and denote it by SR. Kailath demonstrated that the
system functions of a linear channel can not be measured if
SR > 1 and if no further information than B a p L are known
about the channel. Unfortunately the criterion SR < 1 has been
uncritically accepted subsequently as the channel ineasureability
criterion for random time-varying linear channels, without pay—
ing sufficiently careful attention to the conditions under which

• it was derived. In this paper we shall show that the criterion
SR < 1 is not the proper channel rneasureability criterion and
we shall propose a new criterion , SA <l , where the parameter 5A

1
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is called the area spread factor of the channel. Since it will

~e snown tnat SA ~ SR i  cn~.nna_ s wnicn were h~ therto thought

~~~~aasureable are actually measureable.

In defense of Kailath ’ s result it is worth pointing out
that our new criterion does not necessarily have to be regarded
as in conflict with Kailath’s results since we assume somewhat
more knowledge of the fading dispersive characteristics of the
channel to be measured than the gross parameters Bm~~ 

and Lmax~
Kailath was very careful to point out that additional channel
knowledge would generally allow exact channel measurement even
though B L > 1. However, there is a moot philosophicalmax max
point here : if the channel is wide sense stationary (WSS) then
not only Bmax i Lmax but also the additional gross channel infor-
mation needed in the present development may be determined with-
out regard to the size of the product B L • On the otherz-~ x mc~xhand , if the channel is too nonstationary it is not clear that
Bmax and Lmax can be meaningfully defined. Thus, in those cases
where Bmax and 1~max 

can be meaningfully defined and measured,
• Bmax Lmax < 1 is too stringent a criterion to use in deciding
whether the system functions of a channel may be measured. 

-

The new channel measurement criteria and optimal measure—
rnent procedures developed here are based upon the input-output
representation called the Dop~ler-De1ay Spread Function [2].
Discrete representations of the channel are used corresponding

• to simultaneous input time and output bandwidth constraints [2].
The Doppler-Delay Spread Function V(v,~~) provides a phenomeriolog—
ical model of the channel as a continuum of differential scat—
terers subjecting the transmitted signal to a complex gain
v(v,~~)dvd~ for scatterers providing delays and Doppler shifts

*Afl equivalent development exists for the dual £3] system
function, the delay-Doppler spread function, U(~~,v).

2



in the region (~~,~~+d~~) x (‘J , \ -~dv ) .  W~ de~ir~e the region of the
v~~ plane over which V(v ,~~) i~ ~~~oczive y nonzero as the Delay—
Dc~~ ler Occupancy Pattern or sim~~y the Occupancy Pattern
channel. We have sketched four pos~ible delay—Doppler occupancy
patters in (a) — (d) of Fig. 1 with the parameters Bmax andt L
~ax 

explicitly indicated. The shaded area of each figure, i.e.,
the area of the occupancy pattern , is the new spread factor SA.
Examination of these figures show that only for the rectangular
shape of Fig. 1(c) is SA = SR. The rectangular spread factor
is the area of the smallest rectangle with sides parallel to

• the ~,v axes which just encloses the occupancy pattern.

Eccause of the discrete channel representation used, the
problem of channel measurement can he reduced to estimation of
a set of parameters. We consi~e: tw~ different approad~es. In
the first approach we astur~~ the chtnnel parameter vector to be
an unknown nonrandom vector and in the second approach we assume
tna channel parameter vector to ~e •t ransom vector selected from
an ensemble with known correlation matrix. In the former case
the classical least squares apprcach is directly applicable and
has been used first by Levin [4 to estimate the impulse response
of time—invariant filters. In the latter case we enter the
domain of estimation theory originally made popular by Wiener [5].
For both cases we deterzr~jne the ztructure of the optimum esti-
mators and their performances.

The work reported here attacks a problem area similar to
that studied by Bar-David C6~ who considered the direct estima-
tion of V(v,~~), primarily for radar targets. In the case of
stationary and most physical communication channels V(v,~~) has
the character of nonstationary white noise in the ~ and V vari-
ables and the direct measurement of V(v,~~) does not appear to be
a useful occupation. However, our use of input time and output
bandwidth constraints leads to discrete channel models whose
parameters are finite and whose measurements are meaningful.
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II. C~AN~~~ R~ ?~~~~~~T~-~TION

There exist many c~::erent system zunctions for represent—

• ing the input—output of ti:te varying l inear  channels . Various
schemes of categorization have been presented [1312J [7] , but
the author is partial to his own [ 2 1  and assumes that the reader
r.as access to this work . For the development in the present
pape r we need only the input-cutout relation corresponding to
the Doppler—delay spread function , i.e.,

• w(t) = ~~~~~~~~~~~~~~~~~~~~~~ (1)

where z(t) is the input and w (t) is the output2.

When time and/or bandwidth constraints exist upon the input
and/or output of a channel it is possible to replace the original
channel by a simplified canonical channel model which has the
same input—output behavior as the actual channel. Such channel
models were first described by Kailath ti] and further developed

• by the author who in [2] introduced, the models used in the fol-.
lowing discussion. Following the same general procedure as used
by Kailath to derive his measurability criterion we derive the
new channel measurability criterion by placing certain constraints
upon the input and output of the channel arid employing a corre—

• sponding canonical channel model representation for the original
channel. Our results will differ from Kailath’s because the
channel model we use, based upor~ V(v ,~~) allows a simple direct
inclusion of the more complicated Delay-Doppler Occupancy Patterns

• such as shown in Fig. 1.

21fl this paper we use complex envelope notatic’n throughout without
explicitly indicating so in the text Thus z(t) and w(t) are
the complex envelopes of the actual real input and output pro—
cesses•

5
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In [2] (Section vi A(c)) it is femor ~strated tha t if the
in’~ut to a channel is confined b~’ a time gete to the time inter-
val t~ — < t < t .  + and the output spectrum is confined by1 W Wa band pass filter to the frecjuency interva l 

~~~~~~

— 

~ 
< f < +

then in place of the actual channel with Doppler—Delay Spread
Function V(v,~~) one may use a channel whose Doppler—Delay Spread

• Function V ( v ,~~) has the singular form ,

= E Z Vmn 6 ( \ ~
i _

~~) o ( ~~—~~) (2 )
in,n - .

where 6(.) is the unit impulse ,

~~~~ j2ut.(\J_~-) —j2r~f (~
_
~ )Vmn

_ jje e

sinc T(v—~~: sincEW (~ —~ )J V (v,~~)dv d~ (3)

and

sinc x Sin TT X (4 )

An alternate expression for the gain coefficients Vmn ~~
given by

T W
1 ~~~~ -j2rr~t j2r~ fV~~ = 

~ I I 
~ 
e e M(t,f)dt df (5)

t — f -—

i 2  o 2

where M(t,f) is the Frequency Dependent Modulation Function r2],

Examination of (5) reveals that Vmn fs the Fourier coeffi-
cient in a bivariate Fourier series expansion of M (t,f) in the

6 
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~~~~~~~1 Wt ime-frequency interva l (t ~ —~ - < t < z1÷-~-, i0—~ < f <

~~~~~ from (3) we see that the ga in coefficient Vmn is essentially
a two dimensional sampled version of the original  Delay—Doppler
S~:reed Function , the sampling ta3~in; place with “pulses ” of width
or the order of l/T in the ‘ rection and 1/W in the ~ direction.

The discrete channel mcccl , .‘:nich ccrisrsts of a zinite set
of delays and Doppler shifts, is shown in Fig. 2, where we have
used the notation

c_i
Rect(x) =

~~ ( 6 )

i~o Ix ! ~~

~f we define the input to the band l imit ing f i l t e r  as w1(t )
and the gated channel input of ~i~ration T as z1(t ) , then ( 2 )  tells
us that the following discrete chenr~el relationship applies:

. _m n
,, J 2 u

~~~( t— W )
w1(t) = E z1(t — ~~) e V (7)

inn £

The relationship between the actual output w(t) and input z(t) is
• somewhat more involved. Form Fig. 2 we note that the actual out-

put w(t) is obtained by passing w,.(t) through a bandpass filter
of Lendwidth W cps centered on f 0 cps . To simplify the notation
we shall assume f = 0, i.e.,  the rece iver is centered on the

0
• nomina l “ carrier” frequency. Then

• w(t) = w1 (t)~~~W sinc Wt (8)

If the bandwidth of w1(t) is less than or equal to W, then

w(t) = wt(t) (9)

7
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aria tne Input—output relat:on o~ ccites

. m  n.~w(t) = L E R ( — ~ —----) z ( t — ~~) e V~~ ( 10)
m n

Since the input signal is time geted and thus not bandlim—

~ted , strictly speaking w,. ( t )  cannot ~e ~analirm.tea and ( :0)
• cannot be used. However , since ~-:e c~ sume that both the bancwidth

of z ( t)  and W greatly exceed /T , the bandwidth broadening caused
by the time gating has no practical s~.gnificance . One may then
assume that the bandwidth of w1(t ) , W 1 ,  equals the sum of trie
bandwidth of z ( t ) , W~ , plus the ma::imum Doppler spreading of the
channel, as determined from the Delay Doppler Occupancy Pattern.
We shall generally assume

Wi = W ( 11)

and use the simplified input—output relationship ( 10)

In closing this section we should like to discuss some sta~
tistical relationships between the coefficients and also the
way these coefficients vary with the location (t~ ,f0) of the
time—frequency rectangle over which the channel is being repre-
sented. To simplify the discussion we shall assume a WSSUS
(wide sense stationary uncorrelated scattering) channel for
which [2]

v* (v ,)~~ ~~~~~ = s(~ ,v)  ~~r—~) ö ( ~.i_v) ( 1 2)

where S(~~,V) is the Scattering Function of the channel.

8
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:t is shown in :2: that

0 -

v~ V ( 13)mn rs

n=s

when the Scattering Function var ies  very l~~tt1e for d~anges in
c~ of the order of i/W and change s in ‘~ of the order of 1/T.
Thus for trie WSSUS channel ane a :f:cient y smooth Scattering
nctson tne gains or trie c~ ccrece point “scatterers” become

uncorrelatec aria the strengtn c~ tne rerlection from a particu—

icr scatterer becomes prcpcrticnel to th~ amplitude of the
• Scattering Function at the same value of Delay and l~ ppler snift.

The gain coefficient Vm may re regarded as a rancom process
wrisca varies w~ th t. and ~cr notational convenience we crop
tn-s su.oscripts and write

V ( t , f )  = $~ e
j 2Ut -m/T ) ~ _ J 2 T r f ( c_ n / W )

sinc T(v-m/T) sincEW(~~-n~~] V (v,~~)d~~ (14)

T:-~ correlation function of V ( t , f )  is readily found to bemn

V (t,f) V (t+T f+~) R (T Q)mn mn mn

-r j2rT’r(v—~~) j2rrc~(~~—~~)= 1 e e
U

sinc 2 [T(v- .~ .) J s irc 2 Ew (~~—~~) J  s(~~,v) d~ dv (15)
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Assuming that T and W ar~ l~ enough so that S(~~,v) varies
little in a ~ interva l 1/W ani a ~ interval 1/T, the sinc func—
tions in the double integral beco:,-.a im ulsive by comparison to

~~~~~~~ Then we have the iollcw~n; simple result:

R (i- ,~2) f~~~~~ 

_ -!~~~)(i Tc~ ~T I  < T I~ I < W

R (0 , 0) ~~~mn 
; ki ~ T , W

F
10 
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III . NECESS ITY OF A R A  3:  FACr2OR CRITERION

In this section we shall demonstrate the necessity of the
area streac zactor criterion. ~cr T >> ~ anc W >> 3 theto~ tot

of V~~ coe:ficienzs wn:cn are s:gn:fican-aly a~ ::erent
from zero will be determined by how many rectangels of  dimension

1/TW can be f i t ted into the la~j—Do~plsr Occupancy Pattern ,

i.e . ,  into regions of the v ,~ plons over which V(~~,~~) is signif-
icantly d i f fe ren t  from zero , We hsv-s a l read y i l lustrated such
regions in Fig. 5 and defined the area of such a region to be
SA . In order to ignore edge effects and thereby simplify our
discussion we assume T >> L. ~~~ , ~ >> D . .~~~~ Then the number of

tO~~

~~~ 
coefficients of significant amplitude can be expressed as

N h  5
A

( T W +
~~~~

) ( 17)

wh re a is a number accounting for edge effects which becomes
negligible compared to TW as T and W become large.

If the rnultipath spread of the d~annel is Lt0t then the
duration of the output signal is T+Lt0t and the number of u n —
early independent ( complex) samples is approximately W ( T + L t0t )
if W is taken as the bandwidth of the received process. Assuming
W ,T large we may express the number of independent observations
as

N t = ~1T ÷ ~ (18)

where B is a number accounting for edge effects (includi~~ samples
over L

~0~
) which becomes negligible compared to TW as T,W becomes

large ,

Clearly, in order to be able to solve for the Nch unknowns

N ~~Nch out

I

- - - -



- - 
— _

_ •
~:=~~

_-_ _ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 

or 
.

~~ 

,

- ~~~~~~~~~~~~~~~~~ ior TW >> 1 (2 0 )

which demonstrates the necessity of the area spread factor mea—
curabil i ty criterion,

12
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IV, SUFFICIENCY OF AREA SPREAD FA~TC-R CRITERION

In order to demonstrate the sufficiency of the area spread
fc~czor criterion it is necesea: to demonstrate a procedure whereby
the set £Gmn

) may be determined if SA ~ 1.

We assume that the De1av~~Do~~p~~er Occupancy Pattern of the
channel is bounded by a rectangse ~-/hose lower left  hand coordi-
nates are (m0/T ,n0/W ). Thu s ,

Bt0t~~~~ (21)

NL, 
~~~~~~

— (22)tot T

In the discussion to follow we adopt the notation :

w~= w ( t . —~~~÷ - ~y + - ~~. )  ( 2 3 )

= z1 (t ~
_ .~.+ ~~. )  (24 )

- 

jm e
Y~~ = z ~~~e ° ( 2 5 )

j (m+m ) B p.
= V ÷ ~ , ~~~~~ 

e 0 1 (26 )

P~~~~TW 
- 

( 2 7 )

2rT
= (28)

Pj = (e~
_
~~)w . (2 9 )
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the output is sampled at ohs Yyc~uist rate the resulting
set of samoles Cw~ ) provides the minimum number of parameters

• ne~~isi to represent the received ;içnal.  In terms of the fore—
go:ng notation

n=O m=O~~~~ 
(30)

Since arid p~ are assumed known , knowing CYP
,Gmn

I is equivalent
to knowing fzpi Vmn

)
~ 

However , we have chosen to deal with the
rormer because of the simpiif ie~ nctstion , If the input waveform
ss known (30) provides a set of P N I linear equations in
the unknown channel gain coef ficients  ~G ,j (or Cv 1) . The num—mn
‘ocr of is approximately TWSA.

Equation (30)  may be exp r~ csed in the form

Ew] = tY] EG] (31 )

• where the matrix LY], partitioned into column vectors,has the foi-m

=

(32)

and the column vectors w, Y , and G are given by

wo

w
2 -

Lw] = (33)

14
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y1 e3in8

E Y J = y~ e
jmp (34 )

j m GPy~ e

- 
.5.
0

L 6 J

• Gb

GMO

1
• E G] 

, (35)

GM1

GiN .

.
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Ii none of the 
~~~~ 

(0 m ~ ~~, 0 ~ ~ N)  are zero , then
the occ-s;ancy pattern has the recrançs .ar shape of Fig. 1(c)  and

a r a  spread factor is the same as Kailath ’s spread factor.

~‘-hir . some of the C G 3  are known to be zero, the matrix LY] may
b~~~ simolified by omittir.g columns - the column Y~~ being omitted
if G is zero.qp

In order to prove the su f f i ci ency  of the area spread factor
cr:t~ rion it is necessary to :ins at least one transmitteo. signal ,
i .e ., at least one vector Cy 0 ,y - , . .., y~ ) , for which the set of
ec-ustion (31 ) is consistent. These ecpsations will be consistent
if the vectors (Y~~) constitute a linearly independent set. A

necessary and sufficient condition for a set of vectors to be
linearly independent is that the Cremiar .  of these vectors does
riot vanish. The Grarnjan is th~ d ce:minar~t of the matrix tE]

given by

LE ] = [y*]T [yJ (36 )

The matrix CE] is Hermitian symmetric. It is also noni—nega—
tive definite since , if Lx] is a column vector

LX*JT LEJ Lx] = ry~~.*jT L~xJ ~ o (37)

We now examine the structure of the matrix CE]. Consider the
typical term in the matrix:

C = ty* ]T ty ] (38)mn,rs inn rs

From (34) we note that d~ffcrs from Y00 in a time shift of n
units (n/W sec) and a frequency shift of in units ( mJT cps). The
inner product (38) is thus found to d i f fe r  from the ambiguity
function of Y00 only by a phase factor, i.e.,

16 
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‘ T

where 
-

• TW *
= 

~~~ Yp..q 
e-’-

—jp.~.B 
- 

* j24t
= e W j11 (t) z1(t-~~) e dt (40)

in which the integral representation follows from an application
of the sampling theorem.

One way to make the matr ix [E nor.singuiar is to force the
off—diagonal terms to be sufficiently small compared to the
d~agonal terms. The diagonal terms are all equal

2 rT/2 2c = ~~y ~
2 = 

•

• ~z1 (t ) j dt = • l z ( t ) I  dt (41)Iflfl ~~Iflfl 
~T 2

if one could find a time function of effective bandwidth W- C

(with c 0 )  and time durati’n T whose ambiguity function could 
-

be made sufficiently small at the set of lattice points ~~~~~
(excluding (m=0 ,n=O) of course), then apart from a constant factor
EE would be essentially an identity matrix. Although there are
undoubtedly simpler ways in which to make CE] nonsingular, there
are sound reasons for constructing the CE ] matrix with small off—
diagonal terms. In the following section it will be sh~ ,n that
such a choice minimizes the variance of the measurement error in
the presence of noise and greatly simplifies the structure of the
optimum estimator.

It should be recognized that the ambiguity function of a

signal with time duration T and bandwidth W cannot be forced to

be identically zero at the complete set of lattice points since

17
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TW TW /
E 2 !x(~~~)!

2 
~ ~~y (D o)~

2 (42)
0 0

when t y )  is chosen to be a maximal length shift register
ssçuence of ±1’s it is readily zhc-~’m from the ambiguity function

~ 1 ~~~~c-.~ znrs sequence L9~ ~~~~

pq, rs 
~ ._L. : 

~~. ?� :, q~~ s, TW >> 1 (43)
inn ,mri

From (42) we see that this is the smallest level that the
amb iguity function can have if -ll the side lobes are uniformly
small . If only a small fraction crc to be made uniformly small ,
as en tr.e present case , ane zne otne:s are unconstrainec it should
be possible to make them ccnsi~~~rably smaller than 1/J~~. Some
results or Price arid ro:ste-eter ~~~~. ~ are suggestive here. Their
work suggests triat it snoulo s~e jsossso..e to clear away a symmetrec
convex region of low level around the origin of the ambiguity
function as long as this area is less than four. Since we deal
with more genera l areas their results would have to be generalized
to be made applicable. Equation (43) states that the off-diagonal
te~ ms of [E can be mauc as smal . as desired relative to the
diaTonOl terms. Unfortunately , since the or der of the matrix CE]
isTWS ,, where SA iS the area s2rcad factor, the reduction in size
of the off—diagonal terms is accompanied by an increase in order
of the matrix CE] and the well known techniques for determination
of matrix singularity from inspection of the elements of a matrix,
such as those dealing with diagonally dominant matrices C i i] ,
cannot be applied.

There is a simple physical argument for asserting that when
SA > I there must exist transmitted sequences Cy) for which CE]
is invertible. CE] will be invertible if it is positive definite,
i.e., if the quadratic form in (37) is positive no matter what

18
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vector i~ is cnosen. But thes ç-uao:atic form Ey*x*]T C~x] is just
the total energy at the output si the channel when the input is
:~~J and the channel gains ar-s LX .~. Since YJ is of length TW and
Cx of length SATW, when SA < the dimensionality of Lx] is less
than that of CYJ . While dectnerate forms of C~ ] could be chosen
sucn znaz Lx] could ~e a~~ uszec~ to ~orce the output to zero for
all tim , it is intuitively clear that there must be infinite

sets of suitably chosen E~~J ror which r.o Lx] can force the output
to zero.

Assuming that CE] is invertible , we may solve for CGJ with
-she aiô of ~E~~

1 by noting that ii (31) is pre—mul-t iplied by çye~~T

and then by there results

I,. ,

CG 1 = IE] f~~*J~ ~wj (~~~)

19 
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• V• MEAS~JRENEN T Ii~ T-E ~ kEs~:-:CE OF NOISE: 
-

UNKNOWN C:-:A~Y:L CO~RELAT ION
FU~:CTIoNs

• We consider now the problem of measur ing the coeff icients
~ ~n tne presence or riOiSC~ Tne ~th oDserved signal sampleinn -

becomes

N M -
.

—

• 
— 

n=0 m=0 .~,—n 
e G._r 

+ 
~ t ; .‘=0 4 , 2,... , P+N+i

(45)

or in vector notation

-

. 

[Wi = ~YJ [G] + ~N] (46)

where n~ are the noise samples and c is the corresponding noise
vector.

The method of least scuares selects as estimates of (G Ima
those oarameters 

~ 
which make the vector- inn

tw] = LYJ EG ] 
(47 )

as close as possible to the observed vector in the sense of m m —
imizing the energy of the difference vector , w — w. These esti—
mates satisfy the equations

~~~~ YC& ] = ~y*jT [wj (48)

or in terms of the E matrix

CGJ = [E] 1 
[Y*J

T 
Lw] (49)

20
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if, by proper selection o~ the transmitted signal [EJ can

‘or :~-m~~e essentially a unit matrix , i.e.,

[~J ~ C’] (5 0)

where we have normalized

P
z ~y - • (51)

p=o
_ 

~~~~
-

than the estimate becomes

r G J  = [~‘*]“ [wj (52)

An examination of the right hand side of (52) reveals that when
is an identity matrix the estemator is realizable as a rnatcned

fi i ter tank . Thus , from ( 5 2 )  ane (~-6) tne typical estimate
is given by

I * T * ~~~ —nG = r y  j r w j = E w . y e~~~ran L inri ~ k—n

a
* T= W ~~~~e ( t ) y (t-~~) e  dt

(53)

where, to simplify notation , we have defined

T jm0ey(t) = z1(t~— -~ +t) e ( 54 )

In words, 
~~~ 

is estimated by passing the received waveform
through a filter matched to a time and frequency shifted version

21 ‘ -
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of y ( t ) , where the time shif t  is :./W secor .ds and the frequency
s h if t  is m/T cps. If ~E] cannot be recjsr~ ed as a unit matrix
the above matched filter bank m-~sz be followed by the linear
operateon ‘El 1

Aside from ease of inst~-um~nsation there is another reason
for trying to make ~~ a unit :~~-srix: for a given transmitted

s:gnal energy and whate noes tne -esz~ mst~ on error variance is
minrmized if [~~] 

can ~e maoe a unit ::~.trix . The proor is essen—
ti~ l~ y identical to Levin ’s ~-roof ~4 for tne t~me—~ nvariant
channel. For white noise the covariance matrix of the estimate
vector G: is given by

~~* r n
Cov GJ = G G ] - r~~~r~ j

~~

— 
2r 4 • 

55

where

2
~fl~j  (56)

Levin -
~J shows that if the dia;onal terms of a positive def in i te

matrix A are unity , the diagonal elements of the inverse matrix
A 1 will reach the minimum values of I if an d only if A is a
unit matrix~ Since the diagonal terms of [Coy GJ are just the
error var iances , these will he minimized if E can be made into a
unit matrix. Thus the minimum estimation error is

2 = 
~~ ~~mn G ! 2 ~ 2 TWSA

22 
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For the convenience of the -rn-jineer we now compute an input
a.-id output SNR as suming a ~SSbS cnannal . As our output SNR we
: take the ratio

2 2
___  _ _ _ _ _ _ _  2 -gout 2 

~ TwS.~~~
2 = 

(Tw)2s~~~
2 

P=~ 
=

- (53)

where S(~~,~~) is the Scattering Function ar~ we have made use of
L (~~~ )

As the received signal oower we take the ratio of received
segra~ energy to tne tame ante:va~. T. Then i .  tne noise power is
comouted in the observation bandwidth, W, we find that the input
SY~ is given by

‘
~

~~IG i ” ~~pc 
_ _ _ _ _ _Pin — 2 — 

,,-- .. -2 2TW 
~

arid the ratio of output to input S~ R bounded by

pout L (60)
~en 

SA -

• where SA is the area spread factor , and the equality obtains when
[EJ is an identity matr ix~ 
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VI • MEASURE~:E~~ ::~ ::-~: :-~F~~ :::cE OF NOISE:
~~ — - ~~- 7 r ~~~~‘T
~\ ¼~~_ _~~~._ - ~~ s~ L~ :~r ~~~~~ — .4. ~~~~~

F~~~CTIO~ S

The previous section was concerned with optimal channel
:~mssu:ement for unknown cnann-3 correlation function. On the
basis of experimental evidence and theoretical considerations
i t  pears reasonable to postulate a Quasi ~YSSUS channel model

~o: many ~ime varsant cnannass. -n enes sectaor. we snala assume
sucn a channel model and wnite Gauaeian noise and cetermine a
manemum mean squaree error lancer cnennel estamator. When the
channel f luctuat ions are complex Osassian the resulting estimator
is also the unconstrained minieLam mean square estimator. The
approach used is called 3aye s es~~imataon and may be found exten-
sively in the literature. A recent : erence is ~alakrishnan r8j.
T~ describe the optimum estimator we must define the moment matrix
o: the fG ~~~,inn -

[,r~J = [GJ[G
*
J
T 

(61)

For iiT large we may use (13), ~ihich makes the A matrix diagonal
with tne typical term on the diagonal given by

s(~ 
in )

~G~~~
2 

= ( 6 2 )

For white noise the optimal estimate is given by

*T 2 —1 * T[GJ = [[YJ[AJ [Y j + G ~ ]) [A J [Y J [~
.1J (63)

The invers ion in (63)  can always be performed since the unit
matrix [I] is positive definite and the sum of two non-negative
definite matrices is positive definite if either is positive
fefinite. By factoring r~trices Eq. (63) may be expressed in the
alternate form

24
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— 2 — 1 — 1 * T[G1 = [a~ [A J + 
~~

) [Y j rw] (64)

A comparison of (64) with (49) reveals that the least squares
estimete assuming the channel un:<ncwn differs from the minimum

mean scuared error estimate assuming the channel Gaussian only in
a replacemer4t of the matrix r E -  in ti~ former case , by

÷ a 
2

[/t~ 
~~~
. The matrix is deagonal for TW sufficiently

large anc from (58) and (60) tn r  ubpacal term is proportioned to
tne area spreaa factor civaeed ny the anput SNR . At large input
SNR or very low sprea~ facto: tne— two estimates (49) and (64) be-
come identical , while at surficaent~y :.ow input SN~ the matrix IE]
can be ignored and the estimator becomes essentially the matched
filter bank previously discussed. From (64 )  it is readily seen
that when [E] may be regarded as diagonal , the receiver is a
matc~ ec. filter receiver at al:. S~~~’ s watn weaghtangs eepeno.ent
upon the strength of each path.

The estimator (6 3 ) ( an d  (64)) minimizes the error term

2 
= 7~~~G — G i 2 ( 65)

- ma ran’

From the general results of [8~ , the error in our special case is

2 —1 —

= 

~n 
Tr(a~ [A] + (66)

where TrrAJ is the trace of the matrix [A~ (thr sum of the diagonal
terms).

it appears intuit ively obvious and it may be proven that
the measurem ent error will decrease when statistical knowledge is
made available. To illustrate this point in the simplest situation
consider the case where [EJ may be taken as the identity matrix.
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Then

2 2 1
£ = a~~ EZ 

- (67)i ,,, 2+ a / I ~~~~

which by comparison with (57) is seen to be less than the error
when the channel scattering function is ur.kr4own.

The estimator discussed in this section differs from that
• of the previous section in that it distorts , i.e., the “signal”

comPonent of the estimator output di iers from the channel complex
c~ein  vector by a linear transformation. As a consequence there
are actually two types of errors: a :inear distortion error and
an additive noise error. The mean sousred error in (66) is
influenced by both types of errors. From (64) and (46) it is
readily seen that [ii], the signal component of the estimator out-
put is given by

[H] = 
~ = Lan

2f~
1 + [EJ~~~~[E][GJ (68)

where a denotes an average over the additive noise only. It is
clear that the additive noise component of the estimator output ,
N , is given by

[MJ = f a~
2[A ]~~ + [ElI

_l
[Y1

T 
[N] (69)

Ari output signal-to-noise ratio based upon the ratio of the
strength of IHJ to the strength of [NJ can lead to physically
meaningless results because r~

] and [GJ are related by

= ÷ 
~~ RmnrsGrs (70)
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where ~ and ~ are constants and the prime on 
~Z

’denotesmn mars rs
a~.:c .~ sion of the inn term. Idea :.y 

~~~ 
would equal 1 and the

mars 0. in practice , ho~.’-e-.’e: , the ~~plitude factor ~~ 
<

and the interference term 
~~ rs 

Grs will be present. When

th~ gain coefficients G~~ ~re unoorrelated the second term in

~7i) may sazely be regar~ea as “noase” anc the output signal
szrengun acentiried as

~~~~~~~~~~~~~ (71)

the double sum in (70) is correlated with the first term ,
the signal term must be identified as the sum of the first term
ar4d that portion of the double sum correlated to tne first term.

~zien ~~. is tne icentazy matrax an~ tne G ~s are un-man
correlated

= + IIJ]’IG] (72)

where the matrix a~
2
ii~]~~ 

+ I is diagonal. In particular

H = 
1 G (73)ma 1 + a
2
/~G 

~2 ran
f l ! i n f l. -

so that in this simple case there is no uncorrelated part and [H]
is “all” signal. The signal output and noise powers are then

_ _ _  - I G ,
2

*T 
= 

inn (7~~)
[1+ a~

2/ ! G  1 2j
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[X J~~[NJ = Tr LrM J r
~ 

j J
= Tr~~~

2[Aj 1 
+ :‘~
2

= 
— _ _ _ _ _ _  

(
~~

)
• - 2 21L ia  /~GL

When all gain coefficients have the same strength

IG ~2 _ G 2 (76)i~n I

it is readily found that

1G 1 2

~~~~ 2 = ...~ 2 (77)
SA

which is the same as for the case wherein the Scattering Function
is unknown and IE] = ru (c.f. 60).

Although in some cases knowledge of the scattering function
may provide little benefit when rE] is “close” to an identity
matrix, one may show that when E is nearly singular the measure—
merit error for unknown channel statistics becomes very large com-
pared to that when the statistics are known. In particular , sup-
pose that E is singular so that the measurement technique of the
previous section fails. We now determine the performance of the
present technique. To simplify the computation we shall confine
our attention to the computation of the mean squared error 2 at
large input SNR ’s. -
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w .  ‘

Lee us suppose that ~~~ paths are of equal strength , so that

rA l  = IG !~~1I] (78)

The matrix E being a non-negative definite Hermitian Symmetric
matrix may be factored in the form

E = rQ*]
Tr~~Jr Qi - ( 7 9 )

where 0 is a unitary matrix

= (80)

and r~1 is a non—negative diagonal matrix whose entries are the
elgerLvalues of [EJ. •

using (78) — (80) in (66)

2 
= Trf [QJ 1[ 

[~]JQ) ( 81)

~G1 an

Since the operation rQ] ’i.~ [Qi is a similarity transformation it
does not change the trace of the matrix . Thus

TWSA 2 TWSA 22 
= 

IG ! TG I (82)
k1 2 k=1 p .

1~~~~
jG 

~
A

where is the kth eigerivalue of E. As Ojn/~A 
becomes large

u r n  ~2 — j~~~2 . 0 as — (83)
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where 0 is the number of zero cigenvalues. Since the percentage
measurement error is given by

2 2
_ _ _ _ _  

= 
_ _ _  (84)- 

:z;G 1
2 TWSA~ G ! 4

we note that for E sin~ ular and uncorrelated G~ Sran

- 

= TWSA 
(85) —

which will be small if the number of zero eiger~value is small
• compared to the length of triG vector [G].
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